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Abstract— Wireless powered mobile edge computing
(WP-MEC) has been recognized as a promising technique
to provide both enhanced computational capability and
sustainable energy supply to massive low-power wireless devices.
However, its energy consumption becomes substantial, when the
transmission link used for wireless energy transfer (WET) and
for computation offloading is hostile. To mitigate this hindrance,
we propose to employ the emerging technique of intelligent
reflecting surface (IRS) in WP-MEC systems, which is capable of
providing an additional link both for WET and for computation
offloading. Specifically, we consider a multi-user scenario where
both the WET and the computation offloading are based on
orthogonal frequency-division multiplexing (OFDM) systems.
Built on this model, an innovative framework is developed to
minimize the energy consumption of the IRS-aided WP-MEC
network, by optimizing the power allocation of the WET signals,
the local computing frequencies of wireless devices, both the
sub-band-device association and the power allocation used for
computation offloading, as well as the IRS reflection coefficients.
The major challenges of this optimization lie in the strong
coupling between the settings of WET and of computing as well
as the unit-modules constraint on IRS reflection coefficients.
To tackle these issues, the technique of alternating optimization
is invoked for decoupling the WET and computing designs, while
two sets of locally optimal IRS reflection coefficients are provided
for WET and for computation offloading separately relying on
the successive convex approximation method. The numerical
results demonstrate that our proposed scheme is capable
of monumentally outperforming the conventional WP-MEC
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network without IRSs. Quantitatively, about 80% energy
consumption reduction is attained over the conventional MEC
system in a single cell, where 3 wireless devices are served via
16 sub-bands, with the aid of an IRS comprising of 50 elements.

Index Terms— Intelligent reflecting surface (IRS), wireless
powered mobile edge computing (WP-MEC), orthogonal
frequency-division multiplexing (OFDM).

I. INTRODUCTION

A. Motivation and Scope

IN THE Internet-of-Things (IoT) era, a myriad of hetero-
geneous devices are envisioned to be interconnected [1].

However, due to the stringent constraints both on device
sizes and on manufacturing cost, many of them have to be
equipped with either life-limited batteries or low-performance
processors. Consequently, if only relying on their local com-
puting, these resource-constrained devices are incapable of
accommodating the applications that require sustainable and
low-latency computation, e.g. wireless body area networks [2]
and environment monitoring [3]. Fortunately, wireless powered
mobile edge computing (WP-MEC) [4]–[13], which incorpo-
rates radio frequency (RF) based wireless energy transmission
(WET) [14]–[16] and mobile edge computing (MEC) [17],
[18], constitutes a promising solution of this issue. Specifically,
at the time of writing, the commercial RF-based WET has
already been capable of delivering 0.05 mW to a distance of
12−14 m [14], which is sufficient to charge many low-power
devices, whilst the MEC technique may provide the cloud-like
computing service at the edge of mobile networks [18].
In WP-MEC systems, hybrid access points (HAP) associated
with edge computing nodes are deployed in the proximity
of wireless devices, and the computation of these devices is
typically realized in two phases, namely the WET phase and
the computing phase. To elaborate, the batteries of the devices
are replenished by harvesting WET signals from the HAP in
the first phase, while in the computing phase, devices may
decide whether to process their computational tasks locally or
offload them to edge computing nodes via the HAP.

Given that these wireless devices are fully powered by
WET in WP-MEC systems, the power consumption at HAPs
becomes substantial, which inevitably increases the expen-
diture on energy consumption and may potentially saturate
power rectifiers. At the time of writing, the existing research
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contributions that focus on reducing the power consumption
mainly rely on the joint optimization of the WET and
of computing [5], as well as cooperative computation
offloading [10], [11]. However, wireless devices are still sus-
picious to severe channel attenuation, which limits the perfor-
mance of WP-MEC systems. To resolve this issue, we propose
to deploy the emerging intelligent reflecting surfaces (IRS)
[19]–[21] in the vicinity of devices, for providing an addi-
tional transmission link both for WET and for computation
offloading. Then, the power consumption can be beneficially
reduced both for the downlink and for the uplink. To elaborate,
an IRS comprises of an IRS controller and a large number
of low-cost passive reflection elements. Regulated by the
IRS controller, each IRS reflection element may adapt both the
amplitude and the phase of the incident signals reflected, for
collaboratively modifying the signal propagation environment.
The gain attained by IRSs is based on the combination of
so-called the virtual array gain and the reflection-enabled
beamforming gain [19]. More explicitly, the virtual array gain
is achieved by combining the direct and IRS-reflected links,
while the reflection-enabled beamforming gain is realized
by proactively adjusting the reflection coefficients of the
IRS elements. By combining these two types of gain together,
IRSs are capable of reducing the power required both for WET
and for computation offloading, thus improving the energy
efficiency of WP-MEC systems. In this treatise, we aim for
providing a holistic scheme to minimize the energy consump-
tion of WP-MEC systems, relying on IRSs.

B. Related Works

The current state-of-the-art contributions are reviewed from
the perspectives of WP-MEC and of IRS-aided networks,
as follows.

1) Wireless Powered Mobile Edge Computing: This
topic has attracted an increasing amount of research
attention [4]–[13]. Specifically, You et al. firstly proposed the
WP-MEC framework [4], where the probability of successfully
computing was maximized subject to the constraints both on
energy harvesting and on latency. The single-user system con-
sidered in this first trial limits its application in large-scale sce-
narios. For eliminating this shortage, an energy-minimization
algorithm was proposed for the multi-user scenario [5], where
the devices’ computation offloading was realized by the time
division multiple access (TDMA) technique. Following this,
Bi and Zhang maximized the weighted sum computation
rate in a similar TDMA system [6], while an orthogonal
frequency division multiple access (OFDMA) based multi-user
WP-MEC system was investigated in [7]. A holistic online
optimization algorithm was proposed for the WP-MEC in
industrial IoT scenarios [8]. In the aforementioned works,
the associated optimization is commonly realized with the
aid of the alternating optimization (AO) method, because
the pertinent optimization problems are usually not jointly
convex. This inevitably imposes a delay on decision mak-
ing. To mimic this issue, Huang et al. proposed a deep
reinforcement learning based algorithm for maximizing the
computation rate of WP-MEC systems [9], which may replace
the aforementioned complicated optimization by a pre-trained

look-up table. Furthermore, as for the system where both near
and far devices have to be served, the energy consumption
at the HAP has to be vastly increased, because the farther
device harvests less energy while a higher transmit power is
required for its computation offloading. Aimed for releasing
this so-called “doubly near-far” issue, the technique of user
cooperation was revisited [10], [11]. At the time of writing,
the WET and computation offloading in WP-MEC systems in
the face of hostile communication environments has not been
well addressed. Against this background, we aim for tackling
this issue by invoking IRSs. Let us now continue by reviewing
the relevant research contributions on IRSs as follows.

2) IRS-Aided Networks: In order to exploit the potential
of IRSs, an upsurging number of research efforts have been
devoted in its channel modeling [22], [23], analyzing the
impact of limited-resolution phase shifts [24], [25], channel
estimation [26], [27] as well as IRS reflection coefficient
designs [28]–[31]. Inspired by these impressive research con-
tributions, the advantageous effect of IRSs was evaluated in
various application scenarios [32]–[41]. Specifically, an IRS
was employed in multi-cell communications systems for mit-
igate the severe inter-cell interference [32], where an IRS
comprising of 100 reflection elements was shown to be capable
of doubling the sum rate of the multi-cell system. Yang et al.
investigated an IRS-enhanced OFDMA system [33], whose
common rate was improved from around 2.75 bps/Hz to
4.4 bps/Hz, with the aid of a 50-element IRS. Apart from
assisting the aforementioned throughput maximization in the
conventional communications scenario, a sophisticated design
of IRSs may also eminently upgrade the performance of
diverse emerging wireless networks, e.g. protecting data trans-
mission security [34], [35], enhancing the user cooperation
in wireless powered communications networks [36], reducing
the latency in IRS-aided MEC systems [37], as well as assist-
ing energy harvesting systems [38]–[41].1 These impressive
research contributions inspire us to exploit the beneficial role
of IRSs in this momentous WP-MEC scenario.

C. Novelty and Contributions

In this paper, an innovative IRS-aided WP-MEC framework
is proposed, where we consider orthogonal frequency-division
multiplexing (OFDM) systems for its WET and devices’
computation offloading. Under this framework, a joint WET
and computing design is conceived for minimizing its energy
consumption, by optimizing the power allocation of the
WET signals over OFDM sub-bands, the local computing
frequencies of wireless devices, both the sub-band-device
association and the power allocation used for computa-
tion offloading, as well as the pertinent IRS reflection
coefficient design. Let us now detail our contributions as
follows.

1As for IRS-aided energy harvesting systems, the beneficial role of IRSs
has been investigated in simultaneous wireless information and power trans-
fer (SWIPT) systems [38]–[40] and wireless powered communications net-
works [41]. However, the advantageous effect of IRSs has not been exploited
in WP-MEC systems. In this paper, we aim at filling this gap. Since the
IRS reflection coefficient design is coupled with the optimization of resource
allocation and of computation offloading, they have to be jointly optimized,
which deserves a specific study.
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• Energy minimization problem formulation for the new
IRS-aided WP-MEC design: In order to reduce the energy
consumption of WP-MEC systems, we employ an IRS
in WP-MEC systems and formulate a pertinent energy
minimization problem. Owing to the coupling effects
between the designs of WET and of computing, it is dif-
ficult to find its globally optimal solution. Alternatively,
we provide an alternating optimization (AO) based solu-
tion to approach a locally optimal solution, by iteratively
optimizing settings of WET and of computing.

• WET design: The WET setting is realized by alterna-
tively optimizing the power allocation of energy-carrying
signals over OFDM sub-bands and the IRS reflection
coefficients. Specifically, given a set of fixed IRS reflec-
tion coefficients, the power allocation problem can be
simplified to be a linear programming problem, which
can be efficiently solved by the existing optimization soft-
ware. Given a fixed power allocation, the IRS reflection
coefficient design becomes a feasibility-check problem,
the solution of which is incapable of ensuring a rapid
convergence. To tackle this issue, we reformulate the
problem by introducing a number of auxiliary variables,
and provide a locally optimal design of IRS reflection
coefficients, with the aid of several steps of mathematical
manipulations and of the successive convex approxima-
tion (SCA) method.

• Computing design: The settings at the computing phase
are specified by alternatively optimizing the joint sub-
band-device association for and the power allocation
for devices’ computation offloading, IRS reflection
coefficients at the computing phase as well as the local
computing frequencies. Specifically, as verified by [42],
the duality gap vanishes when the number of sub-bands
exceeds 8. Hence, we provide a near-optimal solution for
the joint sub-band-device association and power alloca-
tion problem, relying on the Lagrangian duality method.
The IRS reflection coefficients are designed using the
similar approach devised for that in the WET phase.
Finally, our analysis reveals that the optimal local com-
puting frequencies can be obtained by selecting their
maximum allowable values.

• Numerical validations: Our numerical results validates
the benefits of employing IRSs in WP-MEC systems,
and quantify the energy consumption of our proposed
framework in diverse simulation environments, together
with two benchmark schemes.

The rest of the paper is organized as follows. In Section II,
we describe the system model and formulate the pertinent
problem. A solution of this problem is provided in Section III.
The numerical results are presented in Section IV. Finally, our
conclusions are drawn in Section V.

Notation: In this paper, scalars are denoted by italic let-
ters. Boldface lower- and upper-case letters denote vectors
and matrices, respectively; C

M×N represents the space of
M × N complex matrices; IIIN denotes an N × N identity
matrix; j denotes the imaginary unit, i.e. j2 = −1. The
maths operations used throughout the paper are summarized
in Table I.

TABLE I

MATH OPERATIONS

Fig. 1. An illustration of our IRS-aided WP-MEC system, where
K single-antenna devices are served by a mobile edge computing node via a
single-antenna hybrid access point, with the aid of an N -element IRS.

Fig. 2. An illustration of the harvest-then-computing protocol, where τT
and (1 − τ)T refer to the duration of the WET and the computing phases,
respectively.

II. SYSTEM MODEL AND PROBLEM FORMULATION

As illustrated in Fig. 1, we consider an OFDM-based
WP-MEC system, where K single-antenna devices are served
by a single-antenna hybrid access point (HAP) associated with
an edge computing node through M equally-divided OFDM
sub-bands. Similar to the assumption in [5]–[7], we assume
that these devices do not have any embedded energy sup-
ply available, but are equipped with energy storage devices,
e.g. rechargeable batteries or super-capacitors, for storing the
energy harvested from RF signals. As shown in Fig. 2, relying
on the so-called “harvest-then-computing” mechanism [5],
the system operates in a two-phase manner in each time
block. Specifically, during the WET phase, the HAP broadcasts
energy-carrying signals to all K devices for replenishing
their batteries, while these K devices process their computing
tasks both by local computing and by computation offloading
during the computing phase. We denote the duration of each
time block by T , which is chosen to be no larger than the
tolerant latency of MEC applications. The duration of the WET
and of the computing phases are set as τT and (1 − τ)T ,

Authorized licensed use limited to: Queen Mary University of London. Downloaded on January 20,2022 at 14:57:38 UTC from IEEE Xplore.  Restrictions apply. 



5392 IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 20, NO. 8, AUGUST 2021

respectively. Furthermore, to assist the WET and the devices’
computation offloading in this WP-MEC system, we place
an IRS comprising of N reflection elements in the proximity
of devices. The reflection coefficients of these IRS reflection
elements are controlled by an IRS controller in a real-time
manner, based on the optimization results provided by
the HAP.

Let us continue by elaborating on the equivalent baseband
time-domain channel as follows. We denote the equivalent
baseband time-domain channel of the direct link between the
k-th device and the HAP, the equivalent baseband time-domain
channel between the n-th IRS element and the HAP, and the
equivalent baseband time-domain channel between the k-th

device and the n-th IRS element by ĥhh
d

k ∈ CLd
k×1, ĝggn ∈ CL1×1

and r̂rrk,n ∈ CL2,k×1, respectively, where Ld
k, L1 and L2,k

represent the respective number of delay spread taps. Without
loss of generality, we assume that the above channels remain
approximately constant over each time block. Furthermore,
the channels are assumed to be reciprocal for the downlink
and the uplink.

As for the IRS, we denote the phase shift vector of and the
amplitude response of the IRS reflection elements by θθθ =
[θ1, θ2, . . . , θN ]T and βββ = [β1, β2, . . . , βN ]T , respectively,
where we have θn ∈ [0, 2π) and βn ∈ [0, 1]. Then, the cor-
responding reflection coefficients of the IRS are given by
ΘΘΘ = [Θ1, Θ2, . . . , ΘN ]T = [β1 ejθ1 , β2 ejθ2 , . . . , βNejθN ]T ,
where j represents the imaginary unit and we have |Θn| ≤ 1
for ∀n ∈ N . The baseband equivalent time-domain channel
of the reflection link is the convolution of the device-IRS
channel, of the IRS reflection response, and of the IRS-HAP
channel. Specifically, the baseband equivalent time-domain
channel reflected by the n-th IRS element is formulated as
ĥhh

r

k,n = r̂rrk,n ∗Θn ∗ ĝggn = Θnr̂rrk,n ∗ ĝggn. Here, we have ĥhh
r

k,n ∈
CLr

k×1 and Lr
k = L1 + L2,k − 1, which denotes the number

of delay spread taps of the reflection channel. Furthermore,
we denote the time-domain zero-padded concatenated device-
IRS-HAP channel between the k-th device and the HAP via
the n-th IRS element by vvvk,n = [(r̂rrk,n ∗ ĝggn)T , 0, . . . , 0]T ∈
CM×1. Upon denoting VVV k = [vvvk,1, . . . , vvvk,N ] ∈ CM×N ,
we formulate the composite device-IRS-HAP channel between
the k-th device and the HAP as hhhr

k = VVV kΘΘΘ. Similarly, we use

hhhd
k = [(ĥhh

d

k)T , 0, . . . , 0]T ∈ C
M×1 to represent the zero-padded

time-domain channel of the direct device-HAP link. To this
end, we may readily arrive at the superposed channel impulse
response (CIR) for the k-th device, formulated as

hhhk = hhhd
k + hhhr

k = hhhd
k + VVV kΘΘΘ, ∀k ∈ K, (1)

whose number of delay spread taps is given by Lk =
max(Ld

k, Lr
k). We assume that the number of cyclic pre-

fixes (CP) is no smaller than the maximum number of delay
spread taps for all devices, so that the inter-symbol interfer-
ence (ISI) can be eliminated. Upon denoting the m-th row of
the M ×M discrete Fourier transform (DFT) matrix FFFM by
fffH

m, we formulate the channel frequency response (CFR) for
the k-th device at the m-th sub-band as

Ck,m(ΘΘΘ) = fffH
mhhhk = fffH

mhhhd
k + fffH

mVVV kΘΘΘ, ∀k ∈ K, ∀m ∈ M.

(2)

For ease of exposition, we assume that the knowledge of hhhd
k

and of VVV k is perfectly known at the HAP. Naturally, this
assumption is idealistic. Hence, the algorithm developed in
this paper can be deemed to represent the best-case bound for
the energy performance of realistic scenarios. Since different
types of signals are transmitted in the WET and computing
phases, the reflection coefficients of the IRS require separate
designs in these two phases. The models of the WET and of
computing phases are detailed as follows.

A. Model of the Wireless Energy Transfer Phase

It is assumed that the capacity of devices’ battery is large
enough so that all the harvest energy can be saved without
energy overflow. Let us use ΘΘΘE =

{
ΘE

1 , ΘE
2 , . . . , ΘE

N

}
to

represent the IRS reflection-coefficient vector during the WET
phase, where we have |ΘE

n | ≤ 1 for ∀n ∈ N . Then,
the composite channel of the m-th sub-band for the k-th device
during the WET phase Ck,m(ΘΘΘE) can be obtained by (2).
As a benefit of the broadcasting nature of WET, each device
can harvest the energy from the RF signals transmitted over
all M sub-bands. Hence, upon denoting the power allocation
for the energy-carrying RF signals at the M sub-bands during
the WET phase by pppE = [pE

1 , pE
2 , . . . , pE

M ], we are readily to
formulate the energy harvested by the k-th device as [5]

Ek(τ,pppE ,ΘΘΘE) =
M∑

m=1

ητTpE
m

∣∣Ck,m(ΘΘΘE)
∣∣2, (3)

where η ∈ [0, 1] denotes the efficiency of the energy harvesting
at the wireless devices.2 Due to the broadcasting nature of
wireless energy transfer, the energy harvested at specific
wireless devices might be higher than that required. It is
assumed that the redundant energy is dropped at the end of
each time slot.

B. Model of the Computing Phase

We consider the data-partitioning based application [46],
where a fraction of the data can be processed locally, while
the other part can be offloaded to the edge node. For a specific
time block, we use Lk and �k to denote the number of bits to
be processed by the k-th device and its computation offloading
volume in terms of the number of bits, respectively. The
models of local computing, of computation offloading and of
edge computing are detailed as follows.

1) Local Computing: We use fk and ck to represent its
computing capability in terms of the number of central
processing unit (CPU) cycles per second and the number of
CPU cycles required to process a single bit, for the k-th device,
respectively. The number of bits processed by local computing
is readily calculated as (1 − τ)Tfk/ck, and the number of

2The energy conversion is generally a non-linear process [43]–[45], and
the energy conversion efficiency highly depends on both the input power
and signal waveform. It was shown that when the input power is smaller
than a certain saturation level, the energy conversion process can be nicely
approximated as a linear function [43]–[45], which may achieve a reasonable
trade-off between the physically tangible presentation and the mathematical
tractability. As an initial investigation, we assume the energy harvesting model
as a linear process. The extension concerning the non-linear energy harvesting
model will be considered in our future work.
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bits to be offloaded is given by �k = Lk − (1 − τ)Tfk/ck.
Furthermore, we assume that fk is controlled in the range of
[0, fmax] using the dynamic voltage scaling model [46]. Upon
denoting the computation energy efficiency coefficient of the
processor’s chip by κ, we formulate the power consumption
of the local computing mode as κf2

k for the k-th device [46].
2) Computation Offloading: In order to mitigate the

co-channel interference, the devices’ computation offloading is
realized relying on the orthogonal frequency-division multiple
access (OFDMA) scheme. In this case, each sub-band is
allowed to be used by at most a single device. We use
the binary vector αααk = [αk,1, αk,2, . . . , αk,M ]T and the
non-negative vector pppI

k = [pI
k,1, p

I
k,2, . . . , p

I
k,M ]T to represent

the association between the sub-band and devices as well as
the power allocation of the k-th device to the M sub-bands,
respectively, where we have

αk,m =

{
0, if pI

k,m = 0,

1, if pI
k,m > 0.

(4)

The power consumption of computation offloading is given by∑M
m=1 αk,m(pk,m+pc), where pc represents a constant circuit

power (caused by the digital-to-analog converter, filter, etc.)
[5]. Let us denote the IRS reflection-coefficient vector during
the computation offloading by ΘΘΘI =

{
ΘI

1, Θ
I
2, . . . , Θ

I
N

}
,

where |ΘI
n| ≤ 1 for ∀n ∈ N . Then, the composite channel

of the k-th device at the m-th sub-band denoted by Ck,m(ΘΘΘI)
can be obtained by (2). The corresponding achievable rate of
computation offloading is formulated below for the k-th device

Rk(αααk, pppI
k,ΘΘΘI) =

M∑
m=1

αk,mB log2

(
1+

pk,m|Ck,m(ΘΘΘI)|2
Γσ2

)
,

(5)

where Γ is the gap between the channel capacity and a specific
modulation and coding scheme, while σ2 represents the vari-
ance of the additive white Gaussian noise during computation
offloading. Furthermore, in order to offload all the �k bits
within the duration of the computation phase, the achievable
offloading rate has to obey Rk(τ,αααk, pppI

k,ΘΘΘI) ≥ �k

(1−τ)T .
3) Edge Computing: Invoking the simplified linear

model [5], we formulate the energy consumption at the
edge node as ϑ

∑K
k=1 �k = ϑ

∑K
k=1

[
Lk − (1 − τ)Tfk/ck

]
.

Furthermore, the latency imposed by edge computing
comprises of two parts. The first part is caused by processing
the computational tasks. Given that edge nodes typically
possess high computational capabilities, this part can be
negligible. The second part is induced by sending back the
computational results, which are usually of a small volume.
Hence, the duration of sending the feedback is also negligible.
As such, we neglect the latency induced by edge computing.

C. Problem Formulation

In this paper, we aim for minimizing the total energy con-
sumption of the OFDM-based WP-MEC system, by optimiz-
ing the time allocation for WET and computing phases τ , both
the power allocation pppE and the IRS reflection coefficients ΘΘΘE

at the WET phase, and the local CPU frequency at devices fff ,

the sub-band-device association {αααk} and the power allocation
{pppk} as well as the IRS reflection coefficients ΘΘΘI at the
computing phase, subject to the energy constraint imposed
by energy harvesting, the latency requirement of computation
offloading and the sub-band-device association constraint in
OFDMA systems as well as the constraint on IRS reflection
coefficients. Since the batteries of all the wireless devices are
replenished by the HAP, their energy consumption is covered
by the energy consumption at the HAP during the WET
phase. Hence, the total energy consumption of the system
is formulated as the summation of the energy consumption
both of the WET at the HAP and of the edge computing as
well as of the circuit and controlling at the AP and IRS,
i.e. τT

∑M
m=1 pE

m + ϑ
∑K

k=1

[
Lk − (1 − τ)Tfk/ck

]
+ Ec,

where Ec represents the energy consumption of the circuit and
controlling at the AP and IRS. Since the energy consumption
of the circuit and controlling at the AP and IRS is typically
a fixed value, the third term above can be neglected while
the optimization is proceeded. To this end, the energy mini-
mization problem is readily formulated for our OFDM-based
WP-MEC system as

P0 : min
τ,pppE ,ΘΘΘE ,fff,

{αααk},{pppI
k},ΘΘΘI

τT

M∑
m=1

pE
m + ϑ

K∑
k=1

[
Lk − (1− τ)Tfk

ck

]

s.t. 0 < τ < 1, (6a)

pE
m ≥ 0, ∀m ∈M, (6b)

|ΘE
n | ≤ 1, ∀n ∈ N , (6c)

0 ≤ fk ≤ fmax, ∀k ∈ K, (6d)

αk,m ∈ {0, 1}, ∀k ∈ K, ∀m ∈M,

(6e)
K∑

k=1

αk,m ≤ 1, ∀m ∈M, (6f)

pI
k,m ≥ 0, ∀k ∈ K, ∀m ∈ M, (6g)

|ΘI
n| ≤ 1, ∀n ∈ N , (6h)

(1− τ)T
[
κf2

k +
M∑

m=1

αk,m(pI
k,m + pc)

]

≤ Ek(τ,pppE ,ΘΘΘE), ∀k ∈ K, (6i)

(1− τ)TRk(αααk, pppI
k,ΘΘΘI)

≥ Lk − (1− τ)Tfk

ck
, ∀k ∈ K. (6j)

Constraint (6a) restricts the time allocation for the WET and
for the computing phases. Constraint (6b) and (6c) represent
the range of the power allocation and the IRS reflection coeffi-
cients at the WET phase, respectively. Constraint (6d) gives the
range of tunable local computing frequencies. Constraint (6e)
and (6f) detail the requirement of sub-band-device association
in OFDMA systems. Constraint (6g) and (6h) restrict the range
of the power allocation and the IRS reflection coefficient at
the computing phase, respectively. Constraint (6i) indicates
that the sum energy consumption of local computing and
of computation offloading should not exceed the harvested
energy for each device. Finally, Constraint (6j) implies that
the communication link between the k-th device and the
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HAP is capable of offloading the corresponding computational
tasks within the duration of the computing phase.

III. JOINT OPTIMIZATION OF THE SETTINGS IN

THE WET AND THE COMPUTING PHASES

In this section, we propose to solve Problem P0 in
a two-step procedure. Firstly, given a fixed τ̂ ∈ (0, 1),
Problem P0 can be simplified as follows

P1 : min
pppE ,ΘΘΘE ,fff,

{αααk},{pppI
k},ΘΘΘI

τ̂T

M∑
m=1

pE
m + ϑ

K∑
k=1

[
Lk − (1− τ̂ )Tfk

ck

]

s.t. (6b), (6c), (6d), (6e), (6f), (6g), (6h), (6i), (6j)

In the second step, we aim for finding the optimal τ̂ that
is capable of minimizing the objective function (OF) of
Problem P0 using the one-dimensional search method.3 In the
rest of this section, we focus on solving Problem P1. At a
glance of Problem P1, the optimization variables fff , {αααk} and
{pppI

k} are coupled with pppE and ΘΘΘE in Constraint (6i), which
makes the problem difficult to solve. To tackle this issue,
the AO technique is invoked. Specifically, upon initializing the
setting of the computing phase, we may optimize the design
of the WET phase while fixing the time allocation and the
computing phase settings. Then, the computing phase settings
could be optimized while fixing the time allocation and the
design of the WET. A suboptimal solution can be obtained
by iteratively optimizing the designs of the WET and of the
computing phases. Let us detail the initialization as well as the
designs of the WET and of the computing phases, as follows.

A. Initialization of the Time Allocation and the Computing
Phase

In order to ensure our WET design to be a feasible solu-
tion of Problem P1, the initial settings of the computing
phase denoted by fff (0),

{
ααα

(0)
k

}
,
{
pppI

k

(0)}
,ΘΘΘI (0)

should satisfy
Constraint (6d), (6e), (6f), (6g), (6h) and (6j). Without any
loss of generality, their initialization is set as follows.

• Local computing frequency fff (0): Obeying the uniform
distribution, each element of fff (0) is randomly set in the
range of [0, fmax].

• IRS reflection coefficient at the computing phase ΘΘΘI (0)
:

Obeying the uniform distribution, the amplitude response
βI

n
(0)

and the phase shift θI
n

(0)
are randomly set in the

range of [0, 1] and of [0, 2π), respectively. Then, ΘΘΘI (0) =
{βI

1
(0)

ejθI
1
(0)

, . . . , βI
N

(0)
ejθI

N
(0)} can be obtained.

• Sub-band-device association at the computing phase{
ααα

(0)
k

}
: We reserve a single sub-band for the devices

associated with the index ranging from k = 1 to
k = K , sequentially. Specific to the k-th device,
we use k

(0)
m to denote the sub-band having the maxi-

mum
∣∣Ck,m

(
ΘΘΘI (0))∣∣2 over the unassigned sub-bands, and

assign this sub-band to the k-th device.

3One-dimensional search methods typically incurs high computational com-
plexity. In practice, the time allocation can be proceeded offline based on
the typical data set containing both channel information and volume of
computational tasks, and then set as a fixed value.

• Power allocation at the computing phase
{
pppI

k

(0)}
: For the

k-th device, its power allocation at the computing phase
should satisfy Constraint (6j). For minimizing the energy
consumption, we assume the equivalence of two sides in
Constraint (6j). Then, its initial power allocation is given

by pI(0)

k,k
(0)
m

=
Γσ2

[
2

Lk
(1−τ̂)T B

− fk
ckB −1

]
∣∣c

k,k
(0)
m

(
ΘΘΘI (0)

)∣∣2 . For those sub-bands

associated with the index m �= k
(0)
m , we set pI(0)

k,m = 0.

B. Design of the WET Phase While Fixing the Time
Allocation and Computing Settings

Given a fixed time allocation τ̂ and the settings of the
computing phase fff , {αααk}, {pppI

k} and ΘΘΘI , we may simplify
Problem P1 as

P2 : min
pppE ,ΘΘΘE

τ̂T

M∑
m=1

pE
m

s.t. (6b), (6c),

(1− τ̂ )T
[
κf2

k +
M∑

m=1

αk,m(pI
k,m + pc)

]

≤
M∑

m=1

ητ̂T pE
m

∣∣Ck,m(ΘΘΘE)
∣∣2, ∀k ∈ K. (8a)

Since Constraint (8a) is not jointly convex regarding pppE

and ΘΘΘE , we optimize one of these two variables while fixing
the other in an iterative manner, relying on the AO technique,
as follows.

1) Optimizing the Power Allocation of the WET Phase While
Fixing the Settings of the Time Allocation, the Computing
Phase and the IRS Reflection Coefficient at the WET Phase:
Given an IRS phase shift design ΘΘΘE , Problem P2 is simplified
as

P2-1 : min
pppE

τ̂T

M∑
m=1

pE
m

s.t. (6b), (8a). (9a)

It can be observed that Problem P2-1 is a linear programming
problem, which can be readily solved with the aid of the gen-
eral implementation of interior-point methods, e.g. CVX [47].
The complexity is given by

√
M + KMM [M + KM3 +

M(M + KM2) + M2] [48], i.e. O(K1.5M4.5).
2) Optimizing the IRS Reflection Coefficient at the WET

Phase While Fixing the Settings of the Time Allocation,
the Computing Phase and the Power Allocation at the WET
Phase: Given a power allocation at the WET phase pppE ,
Problem P2 becomes a feasibility-check problem, i.e.

P2-2 : Find ΘΘΘE

s.t. (6c), (8a). (10a)

As verified in [28], if one of the sub-problems is a
feasibility-check problem, the iterative algorithm relying on
the AO technique has a slow convergence. Specific to the prob-
lem considered, the operation of Find in Problem P2-2 cannot
guarantee the OF of Problem P2 to be further reduced in each
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iteration. To address this issue, we reformulate Problem P2-2
as follows, by introducing a set of auxiliary variables {ξk}

P2-2′ : max
ΘΘΘE ,{ξk}

K∑
k=1

ξk

s.t. (6c),

ξk + κf2
k +

M∑
m=1

αk,m(pI
k,m + pc)

≤
∑M

m=1 ητ̂pE
m

∣∣fffH
mhhhd

k + fffH
mVVV kΘΘΘE

∣∣2
1− τ̂

,

∀k ∈ K, (11a)

ξk ≥ 0, ∀k ∈ K. (11b)

It is readily seen that the energy harvested by the wireless
devices may increase after solving Problem P2-2′, which
implies that the channel gain of the reflection link is enhanced.
Then, a reduced power of energy signals can be guaranteed,
when we turn back to solve Problem P2-1. As such, a faster
convergence can be obtained. However, at a glance of Prob-
lem P2-2′, Constraint (11a) is still non-convex regarding ΘΘΘE .
To tackle this issue, we manipulate the optimization problem in
light of [33] as follows. Firstly, we transform Problem P2-2′ to
its equivalent problem below, by introducing a set of auxiliary
variables yyyE , aaaE and bbbE

P2-2′E1 :

max
ΘΘΘE ,{ξk},yyyE ,aaaE ,bbbE

K∑
k=1

ξk

s.t. (6c), (11b),

ξk + κf2
k +

M∑
m=1

αk,m(pI
k,m + pc)

≤
∑M

m=1 ητ̂pE
myE

k,m

1− τ̂
, ∀k ∈ K, (12a)

aE
k,m = 	{

fffH
mhhhd

k + fffH
mVVV kΘΘΘE

}
,

k ∈ K, m ∈ M, (12b)
bE
k,m = 
{

fffH
mhhhd

k + fffH
mVVV kΘΘΘE

}
,

k ∈ K, m ∈ M, (12c)

yE
k,m ≤ (aE

k,m)2 + (bE
k,m)2,

k ∈ K, m ∈ M, (12d)

where 	{•} and 
{•} represent the real and imaginary
part of •, respectively. Following this, the successive convex
approximation (SCA) method [49] is applied for tackling
the non-convex constraint (12d). Specifically, the approxima-
tion function is constructed as follows. The right hand side
of (12d) is lower-bounded by its first-order approximation at
(ãE

k,m, b̃E
k,m), i.e. (aE

k,m)2 + (bE
k,m)2 ≥ ãE

k,m(2aE
k,m− ãE

k,m) +
b̃E
k,m(2bE

k,m − b̃E
k,m), where the equality holds only when we

have ãE
k,m = aE

k,m and b̃E
k,m = bE

k,m. Now we consider the
following optimization problem

P2-2′E2 :

max
ΘΘΘE ,{ξk},yyyE ,aaaE ,bbbE

K∑
k=1

ξk

s.t. (6c), (11b), (12a), (12b), (12c),

Algorithm 1 SCA Approach to Design ΘΘΘE , Given the Settings
of the Time Allocation, the Computing Phase and the Power
Allocation at the WET Phase
Input: tmax, 
, K , M , N , T , η, ck, κ, fmax, pc, Γ, Lk, {hhhd

k},
{VVV k}, τ̂ , PPPE , fff , {αααk}, {pppI

k}, ΘΘΘI and Θ̃ΘΘ
E

Output: ΘΘΘE

1. Initialization
Initialize t1 = 0; 
1 = 1; ξk = 0, ∀k ∈ K
2. SCA approach to design ΘΘΘE

while t1 < tmax && 
1 > 
 do
• Set ãE

k,m = 	{
fffH

mhhhd
k + fffH

mVVV kΘ̃ΘΘ
E}

and b̃E
k,m =


{
fffH

mhhhd
k + fffH

mVVV kΘ̃ΘΘ
E}

, ∀k ∈ K, ∀m ∈ M
• Obtain ΘΘΘE and {ξk} by solving Problem P2-2′E2 using
CVX

• Set 
1 =
∣∣obj

(
ΘΘΘE

)
−obj

(
Θ̃ΘΘ

E
)∣∣∣∣obj

(
ΘΘΘE

)∣∣ , Θ̃ΘΘ
E ←ΘΘΘE , t1 ← t1 + 1

end while
3. Output optimal ΘΘΘE∗

ΘΘΘE∗ ← Θ̃ΘΘ
E

Algorithm 2 Alternating Optimization of pppE and ΘΘΘE , Given
the Settings of the Time Allocation and the Computing Phase

Input: tmax, 
, K , M , N , T , η, ck, κ, fmax, pc, Γ, Lk, {hhhd
k},

{VVV k}, τ̂ , fff , {αααk}, {pppI
k}, ΘΘΘI and Θ̃ΘΘ

E

Output: PPPE and ΘΘΘE

1. Initialization
• Initialize t2 = 0; 
2 = 1; ΘΘΘE(0) = Θ̃ΘΘ

E

• Given ΘΘΘE(0)
, find PPPE(0)

by solving Problem P2-1 via
CVX
2. Alternating optimization of PPPE and ΘΘΘE

while t2 < tmax && 
2 > 
 do
• Given PPPE(t2) and Θ̃ΘΘ

E
= ΘΘΘE(t2), find ΘΘΘE (t2+1)

by
solving Problem P2-2′E1 using Algorithm 1
• Given ΘΘΘE(t2+1)

, find PPPE(t2+1)
by solving Prob-

lem P2-1 via CVX

• Set 
2 =
∣∣obj

(
pppE(t2+1)

,ΘΘΘE(t2+1)
)
−obj

(
pppE(t2)

,ΘΘΘE (t2)
)∣∣∣∣obj

(
pppE(t2+1),ΘΘΘE(t2+1)

)∣∣ ,

t2 ← t2 + 1
end while
3. Output optimal PPPE∗

and ΘΘΘE∗

ΘΘΘE∗ ← ΘΘΘE(t2) and PPPE∗ ← PPPE(t2)

yE
k,m = ãE

k,m(2aE
k,m − ãE

k,m)

+ b̃E
k,m(2bE

k,m − b̃E
k,m), k ∈ K, m ∈ M.

(13a)

Both the OF and contraints in Problem P2-2′E2 are affine.
Hence, Problem P2-2′E2 is a convex optimization problem,
which can be solved by the implementation of interior-point
methods, e.g. CVX [47]. Then, a locally optimal solution of
P2-2′ can be approached by successively updating ãE

k,m and
b̃E
k,m based on the optimal solution of Problem P2-2′E2,

whose procedure is detailed in Algorithm 1. The computation
complexity of the SCA method is analyzed as follows.
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Problem P2-2′E2 involves 2KM linear equality constraints
(equivalently 4KM inequality constraints) of size 2N + 1,
K linear inequality constraints of size M + 1, KM linear
inequality constraints of size 3, K linear inequality constraints
of size 1, N second-order cone inequality constraints of
size 2. Hence, the total complexity of Algorithm 1 is given by
ln(1/
)

√
4KM(2N + 1) + K(M + 1) + 3KM + K + 2N

(2N + 3M + K){4KM(2N + 1)3 + K(M + 1)3 +
27KM + K + (2N + 3M + K)[4KM(2N + 1)2 + K(M +
1)2 + 9KM + K] + 4N + (2N + 3M + K)2} [48], i.e.
ln(1/
)O(K1.5M1.5N4.5+K1.5M2.5N3.5+K1.5M2.5N1.5+
K2.5M1.5N3.5 + K1.5M4.5 + K2.5M2.5N2.5 + K2.5M3.5 +
K3.5M1.5N2.5 + K3.5M2.5). To this end, we summarize the
procedure of solving Problem P2 in Algorithm 2.

C. Design of the Computing Phase While Fixing the Time
Allocation and WET Settings

In this subsection, we aim for optimizing the design of
the computing phase, while fixing the time allocation τ̂ and
the WET settings pppE and ΘΘΘE . In this case, we simplify
Problem P1 as

P3 : min
fff,{αααk},{pppI

k},ΘΘΘI
ϑ

K∑
k=1

[
Lk − (1 − τ̂)Tfk

ck

]
s.t. (6d), (6e), (6f), (6g), (6h), (6i),

M∑
m=1

αk,mB log2

[
1+

pk,m|Ck,m(ΘΘΘI)|2
Γσ2

]

≥ Lk − (1−τ̂)Tfk

ck

(1− τ̂ )T
, ∀k ∈ K. (14a)

Constraint (14a) is not jointly convex regarding {αααk}, {pppI
k}

and ΘΘΘI . Hence, it is difficult to find its globally optimal
solution. Alternatively, its suboptimal solution is provided by
iteratively optimizing the fff , {αααk}, {pppI

k} and ΘΘΘI , again relying
on the AO technique, as follows.

1) Alternating Optimization of the Sub-Band-Device Asso-
ciation and the Power Allocation as Well as the IRS Reflection
Coefficient at the Computing Phase: Given a fixed local
CPU frequency setting fff , the OF of Problem P3 becomes
deterministic. In other words, the optimization of {αααk}, {pppI

k}
and ΘΘΘI seems not contributing to reducing the OF. However,
this is not always true, because if a larger feasible set of fff
can be obtained by optimizing {αααk}, {pppI

k} and ΘΘΘI , a reduced
OF may be achieved when we turn back to optimize fff .
Based on this observation, we formulate the problem below,
by introducing a set of auxiliary variables {ζk}
P3-1 :

max
{ζk},{αααk},{pppI

k},ΘΘΘI

K∑
k=1

ζk

s.t. (6e), (6f), (6g), (6h), (14a)
ζk ≥ 0, ∀k ∈ K, (15a)

(1−τ̂)T
[
κf2

k +
M∑

m=1

αk,m(pI
k,m+ pc) +ζk

]

≤
M∑

m=1

ητ̂T pE
m

∣∣Ck,m(ΘΘΘE)
∣∣2, ∀k ∈ K.

(15b)

As specified in (15a), the auxiliary variables {ζk} are non-
negative, and thus a non-smaller set of fff may be obtained
after solving Problem P3-1. Given that Constraint (14a) is
not jointly convex regarding {pppk} and ΘΘΘI , we optimize {αααk},
{pppI

k} and ΘΘΘI in two steps iteratively.
In the first step, we optimize {ζk}, {αααk} and {pppI

k},
while fixing the IRS reflection coefficient ΘΘΘI . In this case,
Problem P3-1 can be simplified as

P3-1a : max
{ζk},{αααk},{pppI

k}

K∑
k=1

ζk

s.t. (6e), (6f), (6g), (14a), (15a), (15b). (16a)

Problem P3-1a is a combinatorial optimization problem,
where the binary constraint (6e) is non-convex. The classic
solution typically relies on the convex relaxation method [50],
where the binary constraint imposed on {αααk} is relaxed into
a convex constraint by introducing time-sharing variables.
However, the relaxed problem is different from the original
problem, which might lead to a specific error. To address
this issue, a near-optimal solution based on the Lagrangian
duality was proposed in [42], where it is verified that the
duality gap vanishes in the system equipped with more than 8
sub-bands [51], [52]. Hence, in this paper, the Lagrangian
duality method [53] is invoked for solving Problem P3-1a.
Specifically, denoting the non-negative Lagrange multiplier
vectors by λλλ = [λ1, λ2, . . . , λK ]T and μμμ = [μ1, μ2, . . . , μK ]T ,
we formulate the Lagrangian function of Problem P3-1a over
the domain D as

L({ζk}, {pppI
k},λλλ,μμμ

)
=

K∑
k=1

ζk −
K∑

k=1

λk

[
κf2

k +
M∑

m=1

(pI
k,m + pc) + ζk

− Ek(τ̂ , pppE ,ΘΘΘE)
(1− τ̂ )T

]

+
K∑

k=1

μk

[
M∑

m=1

B log2

(
1 +

pI
k,m|Ck,m(ΘΘΘI)|2

Γσ2

)

− Lk − (1−τ̂)Tfk

ck

(1− τ̂ )T

]
, (17)

where the domain D is defined as the set of all non-negative
pI

k,m for ∀k ∈ K and for ∀m ∈ M such that for each m, only
a single pI

k,m is positive for k ∈ K. Then, the Lagrangian dual
function of Problem P3-1a is given by

G(λλλ,μμμ) = max
{ζk},{pppI

k}∈D
L({ζk}, {pppI

k},λλλ,μμμ
)
. (18)

(18) can be reformulated as

G(λλλ,μμμ)

=
M∑

m=1

Ĝm(λλλ,μμμ) +
K∑

k=1

(1− λk)ζk −
K∑

k=1

λkκf2
k

+
K∑

k=1

λk
Ek(τ̂ , pppE ,ΘΘΘE)

(1− τ̂ )T
−

K∑
k=1

μk

[
Lk − (1−τ̂)Tfk

ck

]
(1− τ̂ )T

,

(19)
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where we have

Ĝm(λλλ,μμμ) � max
{pppI

k}∈D

{
−

K∑
k=1

λk(pI
k,m + pc)

+
K∑

k=1

μkB log2

[
1 +

pI
k,m|Ck,m(ΘΘΘI)|2

Γσ2

]}
.

(20)

It is readily seen that (20) is concave regarding pI
k,m. Thus,

upon letting its first-order derivative regarding pI
k,m be 0,

we may give the optimal power of the m-th sub-band when it
is allocated to the k-th device as

p̂I
k,m(λk, μk) =

[
μkB

λk ln 2
− Γσ2

|Ck,m(ΘΘΘI)|2
]+

. (21)

Then, Ĝm(λλλ,μμμ) can be obtained, by searching over all possible
assignments of the m-th sub-band for all the K devices,
as follows

Ĝm(λλλ,μμμ) = max
k

{
− λk

[
p̂I

k,m(λk, μk) + pc

]

+ μkB log2

[
1 +

p̂I
k,m(λk, μk)|Ck,m(ΘΘΘI)|2

Γσ2

]}
,

(22)

and the suitable device is given by k∗ = arg Ĝm(λλλ,μμμ). We set
αk∗,m = 1 and pI

k∗,m = p̂I
k∗,m as well as αk,m = 0 and

pI
k,m = 0 for ∀k �= k∗. We continue by calculating {ζk} as

follows. At a glance of (21), it is observed that λk has to
yield λk > 0, ∀k ∈ K, which implies that Constraint (15b)
is strictly binding for the optimal solution of Problem P3-1a.
Therefore, ζk can be set as

ζk =
Ek(τ̂ , pppE ,ΘΘΘE)

(1− τ̂ )T
− κf2

k −
M∑

m=1

αk,m(pI
k,m + pc). (23)

Once all Ĝm(λλλ,μμμ) and ζk are obtained, G(λλλ,μμμ) can be
calculated by (19). Bearing in mind that the obtained G(λλλ,μμμ)
is not guaranteed to be optimal, we have to find a suit-
able set of λλλ and μμμ that minimize G(λλλ,μμμ), which can
be realized by the ellipsoid method [53]. More explicitly,
the Lagrange multipliers are iteratively updated following their
sub-gradients towards their optimal settings. The correspond-
ing sub-gradients are given as follows

sλk
= κf2

k +
M∑

m=1

αk,m(pI
k,m + pc)− Ek(τ̂ , pppE ,ΘΘΘE)

(1 − τ̂)T
, (24)

sμk
=

Lk − (1−τ̂)Tfk

ck

(1− τ̂ )T

−
M∑

m=1

αk,mB log2

(
1 +

pI
k,m|Ck,m(ΘΘΘI)|2

Γσ2

)
. (25)

Upon denoting the iteration index by t, the Lagrange multi-
pliers are updated obeying λk(t + 1) = [λk(t) + δλ(t)sλk

]+

and μk(t + 1) = [μk(t) + δμ(t)sμk
]+, where we set δλ(t) =

δλ(1)/t and δμ(t) = δμ(1)/t for ensuring the convergence
of the OF. In the problem considered, the ellipsoid method

Algorithm 3 Design of {αααk} and {pppI
k}, Given the Settings of

τ̂ , pppE , ΘΘΘE , fff and ΘΘΘI

Input: tmax, 
, K , M , N , T , η, ck, κ, fmax, pc, Γ, Lk, {hhhd
k},

{VVV k}, τ̂ , PPPE , ΘΘΘE , ΘΘΘI , fff , ΘΘΘI , λλλ and μμμ
Output: {ζk}, {αααk}, {pppI

k}
1. Initialization
Initialize t3 = 0; 
3 = 1; Calculate L(0) using (17)
2. Optimization of {ζk}, {αααk} and {pppI

k}
while t3 < tmax && 
3 > 
 do

for m = 1 : M do
• Calculate p̂I

k,m using (21) for each ∀k ∈ K
• Obtain the optimal device k∗ = arg Ĝm(λλλ,μμμ) in (22)
• Set αk∗,m = 1 and pI

k∗,m = p̂I
k∗,m as well as αk,m = 0

and pI
k,m = 0 for ∀k �= k∗

end for
• Calculate ζk using (23)
• Calculate L(t3+1) using (17)
• Update λλλ and μμμ using the ellipsoid method

• Set 
3 =
∣∣L(t3+1)−L(t3)

∣∣∣∣L(t3+1)
∣∣ , t3 ← t3 + 1

end while
3. Output optimal {ζk}∗, {αααk}∗ and {pppI

k}∗
{ζk}∗ = {ζk}, {αααk}∗ = {αααk}, {pppI

k}∗ = {pppI
k}

converges in O(K2) iterations [42], [53]. Within each iter-
ation, the computational complexity is of O(KM). Hence,
the total computational complexity is given by O(MK3). The
procedure of this Lagrangian duality method is summarized
in Algorithm 3.

In the second step, we optimize the IRS reflection
coefficient ΘΘΘI , while fixing the settings of the resource
allocation at the computing phase {αααk} and {pppI}. In this
case, Problem P3-1 becomes a feasibility-check problem
below

P3-1b : Find ΘΘΘI

s.t. (6h), (14a).

The problem can be solved using the approach devised in
Section III-B.2, detailed as follows. By introducing a set of
auxiliary variables {χk}, we transform P3-1b to the problem
below

P3-1b′ : max
ΘΘΘI ,{χk}

K∑
k=1

χk

s.t. (6h),

χk ≥ 0, ∀k ∈ K, (27a)
m∑

m=1

αk,mB log2

[
1 +

pk,m|Ck,m(ΘΘΘI)|2
Γσ2

]

≥ Lk − (1−τ̂)Tfk

ck

(1− τ̂ )T
+ χk, ∀k ∈ K. (27b)

Constraint (27b) is non-convex regarding ΘΘΘI . To address this
issue, firstly we transform Problem P3-1b′ to its equivalent
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form, by introducing a set of auxiliary variables yyyI , aaaI and bbbI

P3-1b′E1 :

max
ΘΘΘI ,{χk},yyyI ,aaaI ,bbbI

K∑
k=1

χk

s.t. (6h), (27a),
m∑

m=1

αk,mB log2

(
1 +

pk,myI
k,m

Γσ2

)

≥ Lk − (1−τ̂)Tfk

ck

(1 − τ̂)T
+ χk, ∀k ∈ K,

(28a)

aI
k,m = 	{

fffH
mhhhd

k + fffH
mVVV kΘΘΘI

}
,

k ∈ K, m ∈ M, (28b)

bI
k,m = 
{

fffH
mhhhd

k + fffH
mVVV kΘΘΘI

}
,

k ∈ K, m ∈ M, (28c)

yI
k,m = (aI

k,m)2 + (bI
k,m)2,

k ∈ K, m ∈ M. (28d)

Then, upon invoking the so-called SCA method as detailed in
Section III-B.2, we approach the locally optimal solution by
solving the problem below in a successive manner

P3-1b′E2 :

max
ΘΘΘI ,{χk}

K∑
k=1

χk

s.t. (6h), (27a), (28a), (28b), (28c),
yI

k,m = ãI
k,m(2aI

k,m − ãI
k,m)

+ b̃I
k,m(2bI

k,m− b̃I
k,m), k ∈ K, m ∈M.

(29a)

Problem P3-1b′E2 is a convex optimization problem, which
can be readily solved with the aid of the software of
CVX [47]. The computational complexity is the same as that
given in Section III-B.2. Note that the optimization of {αααk},
{pppI

k} and ΘΘΘI not only contributes to reducing the OF of
Problem P2, but also leads to a decreased OF of Problem P1
by slacking its constraint (8a). Hence, we may still reduce the
OF of Problem P1 by iteratively optimizing the settings of
the WET phase and the computing phase, even if fff reaches
its maximum value.

2) Design of CPU Frequencies: Given the settings of the
sub-band-device association {αααk}, the power allocation {pppI

k}
and the IRS reflection coefficient ΘΘΘI , Problem P3 can be
simplified as

P3-2 : min
fff

ϑ

K∑
k=1

[
Lk − (1− τ̂ )Tfk

ck

]
s.t. (6d), (15b). (30a)

It can be seen that the OF of Problem P3-2 decreases upon
increasing fff . Hence, upon denoting

f̂k =

√
Ek(τ̂ ,pppE ,ΘΘΘE)

(1−τ̂)T −∑M
m=1 αk,m(pI

k,m + pc)− ζk

κ
, (31)

the optimal fff can be obtained as (32), as shown at the bottom
of the next page.

Algorithm 4 Alternating Optimization of fff , {αααk}, {pppI
k}

and ΘΘΘI , Given the Settings of τ̂ , pppE and ΘΘΘE

Input: tmax, 
, K , M , N , T , η, ck, κ, fmax, pc, Γ, Lk, {hhhd
k},

{VVV k}, τ̂ , PPPE , ΘΘΘE , fff , and Θ̃ΘΘ
I

Output: {αααk} {pppI
k} and ΘΘΘI

1. Initialization
• Initialize t4 = 0; 
4 = 1; ΘΘΘI (0) = Θ̃ΘΘ

I

• Given ΘΘΘI (0)
, find {αααk}(0) and {pppI

k}(0) by solving Prob-
lem P3-1a via Algorithm 3
• Obtain fff (0) via (32) and calculate obj

(
fff (0)

)
2. Alternating optimization of fff , {αααk}, {pppI

k} and ΘΘΘI

while t4 < tmax && 
4 > 
 do
• Given {αααk}(t4), {pppI

k}(t4) and Θ̃ΘΘ
I

= ΘΘΘI (t4), find

ΘΘΘI (t4+1)
by solving Problem P3-1bE1 via Algorithm 1

• Given ΘΘΘI (t4+1)
, find {αααk}(t4+1) and {pppI

k}(t4+1) by
solving Problem P3-1a via Algorithm 3
• Obtain fff (t4+1) via (32) and calculate obj

(
fff (t4+1)

)
• Set 
4 =

∣∣obj
(
fff(t4+1)

)
−obj

(
fff(t4)

)∣∣∣∣obj
(
fff(t4+1)

)∣∣ , t4 ← t4 + 1

end while
3. Output optimal {αααk}∗ {pppI

k}∗ and ΘΘΘI∗

{αααk}∗ ← {αααk}(t4), {pppI
k}∗ ← {pppI

k}(t4) and ΘΘΘI∗ ←ΘΘΘI (t4)

The procedure of optimizing {αααk}, {pppI
k}, ΘΘΘI and fff is

summarized in Algorithm 4. To this end, it is readily to
summarize the algorithm solving Problem P1 under a given
τ̂ in Algorithm 5, and an appropriate τ is found with the aid
of numerical results, as detailed in Section IV-B.

Since the variables are grouped into two sub-blocks,
the optimization in Algorithm 5 is decomposed into two layers,
which incurs high complexity. In order to resolve this issue,
a one-layer optimization scheme is also conceived, where
the variables PPPE , ΘΘΘE , fff , {αααk} {pppI

k} and ΘΘΘI are alterna-
tively optimized in a single loop. Its pseudocode is detailed
in Algorithm 6.

Remark 1: The feasibility check problems P2-2, P3 and
P3-1b may not explicitly contribute to the convergence of
the outer loop. By transforming them to P2-2′, to P3-1 and
to P3-1b′, respectively, we are able to enlarge the feasible
space of the optimization problem being iterated. As a benefit,
the objective function of the outer loop is monotonic and the
convergence of the outer loop is guaranteed.

Remark 2: Given that the SCA technique is invoked in
solving P2-2′ and P3-1b′, their objective functions are not
guaranteed to be maximized. As such, the solution obtained by
Algorithm 5 does not correspond to a locally optimal solution
but can only associate with a saddle point [54, Ch. 2].

IV. NUMERICAL RESULTS

In this section, we present the pertinent numerical results,
for evaluating the performance of our proposed IRS-aided
WP-MEC design. A top view of the HAP, of the wireless
devices and of the IRS are shown in Fig. 3, where the
HAP’s coverage radius is R and the IRS is deployed at the
cell edge. The locations of wireless devices are assumed to
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Algorithm 5 Two-Layer Optimization of the WET and
Computing Phases, Given the Time Allocation

Input: tmax, 
, K , M , N , T , η, ck, κ, fmax, pc, Γ, Lk, {hhhd
k},

{VVV k} and τ̂
Output: PPPE , ΘΘΘE , fff , {αααk} {pppI

k} and ΘΘΘI

1. Initialization
• Initialize t6 = 0; 
6 = 1; Θ̃ΘΘ

E

• Initialize fff (0), {αααk}(0), {pppI
k}(0) and ΘΘΘI (0)

following
Section III-A
• Given fff (0), {αααk}(0), {pppI

k}(0) and ΘΘΘI (0)
, find PPPE (0)

and

ΘΘΘE(0)
by solving Problem P2 via Algorithm 2

2. Alternating optimization of PPPE , ΘΘΘE , fff , {αααk} {pppI
k} and

ΘΘΘI

while t5 < tmax && 
5 > 
 do
• Given PPPE(t5), ΘΘΘE(t5) and Θ̃ΘΘ

I
= ΘΘΘI (t5)

, find fff (t5+1),
{αααk}(t5+1), {pppI

k}(t5+1) and ΘΘΘI (t5+1)
by solving Prob-

lem P3 using Algorithm 4
• Given fff (t5+1), {αααk}(t5+1), {pppI

k}(t5+1), ΘΘΘI (t5+1)
and

Θ̃ΘΘ
E

= ΘΘΘE(t5)
, find PPPE(t5+1)

and ΘΘΘE(t5+1)
by solving

Problem P2 via Algorithm 2

• Set 
5 =
∣∣obj(t5+1)−obj(t5)

∣∣∣∣obj(t5+1)
∣∣ , t5 ← t5 + 1

end while
3. Output optimal PPPE∗

, ΘΘΘE∗
, fff∗, {αααk}∗ {pppI

k}∗ and ΘΘΘI∗

PPPE∗ ← PPPE(t5)
, ΘΘΘE∗ ← ΘΘΘE(t5)

, fff∗ ← fff (t5), {αααk}∗ ←
{αααk}(t5), {pppI

k}∗ ← {pppI
k}(t5) and ΘΘΘI∗ ← ΘΘΘI (t5)

obey the uniform distribution within a circle, whose radius
and locations are specified by r as well as d1 and d2,
respectively. Their default settings are specified in the block
of “System model” in Table II. The efficiency of the energy
harvesting η is set as 0.5. As for the communications channel,
we consider both the small-scale fading and the large-scale
path loss. More explicitly, the small-scale fading is assumed
to be independent and identically distributed (i.i.d.) and obey
the complex Gaussian distribution associated with zero mean
and unit variance, while the path loss in dB is given by

PL = PL0 − 10β log10

(
d

d0

)
, (33)

where PL0 is the path loss at the reference distance d0; β and
d denote the path loss exponent of and the distance of the
communication link, respectively. Here we use βua, βui and
βia to represent the path loss exponent of the links between the
wireless devices and the HAP, between the wireless devices
and the IRS, as well as between the IRS and the HAP,

Algorithm 6 One-Layer Optimization of the WET and
Computing Phases, Given the Time Allocation

Input: tmax, 
, K , M , N , T , η, ck, κ, fmax, pc, Γ, Lk, {hhhd
k},

{VVV k}, τ̂ and Θ̃ΘΘ
E

Output: PPPE , ΘΘΘE , fff , {αααk} {pppI
k} and ΘΘΘI

1. Initialization
• Initialize t6 = 0; 
6 = 1; ΘΘΘE(0) = Θ̃ΘΘ

E

• Initialize fff (0), {αααk}(0), {pppI
k}(0) and ΘΘΘI (0)

following
Section III-A
• Given ΘΘΘE(0)

, find PPPE(0)
by solving Problem P2-1 via

CVX and calculate obj(0)

2. Alternating optimization of PPPE , ΘΘΘE , fff , {αααk} {pppI
k}

and ΘΘΘI

while t6 < tmax && 
6 > 
 do
• Given PPPE(t6), ΘΘΘE(t6)

, fff (t6) and ΘΘΘI (t6), find {αααk}(t6+1)

and {pppI
k}(t6+1) by solving Problem P3-1a using Algo-

rithm 3
• Given {αααk}(t6+1), {pppI

k}(t6+1) and ΘΘΘI (t6), find ΘΘΘI (t6+1)

by solving Problem P3-1bE1 via Algorithm 1
• Obtain fff (t6+1) via (32) and calculate obj(t6+1)

• Set 
6 =
∣∣obj(t6+1)−obj(t6)

∣∣∣∣obj(t6+1)
∣∣

• Given PPPE(t6), find ΘΘΘE(t6+1)
by solving Prob-

lem P2-2′E1 using Algorithm 1
• Given ΘΘΘE (t6), find PPPE(t6+1)

by solving Problem P2-1
via CVX
• t6 ← t6 + 1

end while
3. Output optimal PPPE∗

, ΘΘΘE∗
, fff∗, {αααk}∗ {pppI

k}∗ and ΘΘΘI∗

PPPE∗ ← PPPE(t5)
, ΘΘΘE∗ ← ΘΘΘE(t5), fff∗ ← fff (t5), {αααk}∗ ←

{αααk}(t5), {pppI
k}∗ ← {pppI

k}(t5) and ΘΘΘI∗ ←ΘΘΘI (t5)

respectively.4 Furthermore, the additive while Gaussian noise
associated with zero mean and the variable of σ2 is imposed
both on the energy signals and on the offloading signals.
The default values of the parameters are set in the block of
“Communications model” in Table II. As for the computing
model, the variables of Lk and ck are assumed to obey the
uniform distribution. The offloaded tasks are assumed to be
computed in parallel by a large number of CPUs at the edge
computing node, where the computing capability of each CPU
is fe = 109 cycle/s. Then, the energy consumption at the
edge for processing the offloaded computational tasks can be

4We assume that the channel of the direct link between the HAP and devices
is hostile (due to an obstruction), while this obstruction can be partially
avoided by the IRS-reflection link. Hence, we set a higher value for βua.

fk =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0, if
Ek(τ̂ , pppE ,ΘΘΘE)

(1 − τ̂)T
−

∑M

m=1
αk,m(pI

k,m + pc)− ζk < 0,

f̂k, if 0 ≤ Ek(τ̂ , pppE ,ΘΘΘE)
(1− τ̂ )T

−
∑M

m=1
αk,m(pI

k,m + pc)− ζk < κf2
max,

fmax, if
Ek(τ̂ , pppE ,ΘΘΘE)

(1 − τ̂)T
−

∑M

m=1
αk,m(pI

k,m + pc)− ζk ≥ κf2
max.

(32)
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Fig. 3. An illustration of the locations of the HAP, of devices and of the
IRS in the IRS-aided WP-MEC system.

TABLE II

DEFAULT SIMULATION PARAMETER SETTING

calculated as ϑ = cκf2
e = 5×10−8 Joule/bit. The simulation

is operated in a 3.1 GHz processor associated with an 8 GB
2133 MHz memory.

Apart from our algorithms developed in Section III, we also
consider two benchmark schemes for comparison. Let us
describe these three schemes as follows.

• With IRS: In this scheme, we optimize both the power
allocation pppE and the IRS reflection coefficients ΘΘΘE at
the WET phase, as well as the local CPU frequency
at devices fff , the sub-band-device association {αααk},
the power allocation {pppk} and the IRS reflection coeffi-
cients ΘΘΘI at the computing phase, relying on Algorithm 5.

• RandPhase: The power allocation pppE at the WET phase,
as well as the local CPU frequency at devices fff , the sub-
band-device association {αααk} and the power allocation
{pppk} at the computing phase are optimized with the
aid of Algorithm 5, while we skip the design of the
IRS reflection coefficients ΘΘΘE and ΘΘΘI , whose amplitude
response is set to 1 and phase shifts are randomly set in
the range of [0, 2π) obeying the uniform distribution.

• Without IRS: The composite channel fffH
mVVV kΘΘΘ is set to 0

both for the WET and for the computation offloading.
The power allocation pppE at the WET phase, as well
as the local CPU frequency at devices fff , the sub-band-
device association {αααk} and the power allocation {pppk}

at the computing phase are optimized with the aid of
Algorithm 5, while we skip the optimization of the IRS
reflection coefficient ΘΘΘE and ΘΘΘI .

Let us continue by presenting the selection of the time
allocation, sub-band allocation in the WET and the computing
phases, as well as the impact of diverse environment settings,
as follows.

A. Properties of the Proposed Algorithm

1) Convergence Behavior: Fig. 4 presents the convergence
behavior of Algorithm 5. It can be seen that the performance
of the SCA-aided algorithm proposed for the IRS design con-
verges within 35 iterations, while the outer loops, including the
algorithms proposed for solving P2, P3-1 and P1, are capable
of achieving a convergence within 5 iterations. Furthermore,
as analyzed in Section III, their computational complexity is
in a polynomial form. Hence, the proposed algorithm can be
practically implemented.

2) Comparison Between Algorithm 5 and Algorithm 6:
Fig. 5 depicts the energy consumption performance of
Algorithm 5 and of Algorithm 6 in 10 same random channel
realizations. It can be seen that Algorithm 5 slightly outper-
forms Algorithm 6 in most cases. The performance advantage
of Algorithm 5 is mainly due to its higher computational
complexity. Specifically, our simulation shows that over 100
random channel realizations, the average computation time of
Algorithm 5 and of Algorithm 6 spent on each realization are
8.60 s and 41.33 s, respectively, which were run in a 3.1 GHz
Intel Core i5 processor. As such, Algorithm 6 is suggested
for the practical implementation, because Algorithm 6 has a
light performance loss but processes much lower computation
complexity.

3) Comparison With the Optimal Joint Sub-Band and Power
Allocation Algorithm: Fig. 6 compares the performance of
our proposed algorithm with the joint sub-band and power
allocation algorithm where the sub-band allocation is opti-
mized using the exhaustive search method and the power
allocation is realized by the optimal water-filling algorithm.
No performance difference is observed between the exhaus-
tive search and the proposed algorithm, which verifies the
zero duality gap. Note that the exhaustive search method
requires KM comparison for the sub-band scheduling, while
our proposed algorithm only compares KN candidates. It is
demonstrated that our proposed algorithm is capable of achiev-
ing a near-optimal performance with dramatically reduced
complexity.

4) Impact of the Phase Quantization: Due to the associated
hardware limitation, only a limited number of discrete IRS
phase shifts can be provided in practice [29], which prohibits
the direct implementation of our proposed algorithms. An intu-
itive practical solution to this issue is to round the continuous
phase shift obtained to its nearest discrete phase shift. Natu-
rally, a performance loss is imposed, owing to the associated
quantization effect. Fig. 7 evaluates the impact of phase
quantization on the total energy consumption, where three
assumptions are considered. Specifically, under the assumption
of continuous phase shifts, the phase shift of each IRS element
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Fig. 4. Convergence behavior of the proposed algorithms. (a) Algorithm 1 for solving Problem P2-2′; (b) Algorithm 2 for solving Problem P2; (3)
Algorithm for solving Problem P3-1; (d) Algorithm 5 for solving Problem P1. The parameter settings are specified in Table II.

Fig. 5. Simulation results of the total energy consumption versus the
realization index by using Algorithm 5 and 6, respectively. The parameter
settings are specified in Table II.

Fig. 6. Simulation results of our proposed algorithm and of the optimal
sub-band allocation algorithm. As for the optimal sub-band allocation algo-
rithm, the sub-band allocation makes use of the exhaustive search method and
the power allocation is realized by the water-filling algorithm. The number of
mobile devices is set as K = 2.

can be set as an arbitrary value in the interval of [0, 2π];
determined by a 1-bit control signal, the phase shift of each
IRS element has to be either 0 or π under the assumption
of 1-bit phase shift; for a 2-bit control signal, the phase

Fig. 7. Simulation results of the total energy consumption versus the
realization index under different assumptions of IRS phase shifts. “Cont.”,
“1-bit” and “2-bit” refer to the assumptions of continuous, 1-bit, and 2-bit
phase shifts, respectively. The parameter settings are specified in Table II.

shift of each IRS element has to be one of the values in
the set of

{
0, π

2 , π, 3π
2

}
. We have the following observations.

Firstly, as expected, the total energy consumption decreases
upon increasing the number of discrete phase shifts. Secondly,
the performance gap between the schemes under the assump-
tions of continuous phase shifts and 2-bit phase shifts ranges
from 1.9% to 10.4%, which implies that the quantization loss
is acceptable for 2-bit phase shifts in practice. Therefore, in the
following the results obtained under the assumption of the
continuous phase are presented for illustrating the best-case
performance of the proposed algorithm.

B. Selection of the Time Allocation

In order to find an appropriate time allocation for our
WP-MEC system, we depict the total energy consumption
(the OF of Problem P1) versus the the time allocation τ
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Fig. 8. Joint sub-band and of power allocation for the WET and the computing phases, relying on the Algorithm 5, where the number of bits to be processed
is set the same as 20 Kbits for the three wireless devices. (a) The channel gain at the WET phase; (b) The joint sub-band and power allocation at the WET
phase; (c) The channel gain at the computing phase; (d) The joint sub-band and power allocation at the computing phase. The parameter settings are specified
in Table II.

Fig. 9. Simulation results of the total energy consumption versus the time
allocation τ relying on the exhaustive search method. The parameter settings
are specified in Table II.

in Fig. 9.5 It can be seen that the total energy consumption
becomes higher upon increasing τ for all these three schemes
considered. The reason behind it is explained as follows. For a
given volume of the computational task to be offloaded within
the time duration of T , an increase of τ implies a higher
offloading rate required by computation offloading, while at
a glance of (5), the computation offloading rate is formulated
as a logarithmic function of the offloading power. Hence,
we have to largely increase the transmit power of computation
offloading for providing the extra offloading rate required by
the increase of τ , which results in a higher energy consumption

5The exhaustive search for the optimal τ may induce high computational
complexity. In practice, τ can be optimized in an offline manner with the aid
of simulation results whose parameters are specifically set for the application
scenario.

at the wireless devices. Furthermore, since the energy required
by WET is determined by the energy consumption at the
wireless devices, the total energy consumption becomes higher
upon increasing τ . Based on this discussion, it seems that we
should select the value of τ as small as possible. However, this
may lead to an upsurge of the power consumption for WET,
which might exceed the maximum allowable transmit power
at the HAP. Therefore, as a compromise, for the environment
associated with the default settings we select τ = 0.1, beyond
which the total energy consumption becomes increasingly
higher along with τ .

C. Joint Sub-Band and Power Allocation in the WET and
Computing Phases

Fig. 8 illustrates the channel gain as well as the joint
sub-band and power allocation both for the WET and com-
puting phases. Our observations are as follows. Firstly, only a
small number of sub-bands are activated for WET. As shown
in Fig. 8b, the 5-th sub-band is activated for WET. This allo-
cation is jointly determined by the power consumption of the
computing phase and by the channel gain in the WET phase.
Specifically, with the reference of Fig. 8d, Device 3 requires
the highest power consumption for computation offloading.
Given that the overall performance is dominated by the device
having the highest energy consumption, we may reduce the
energy consumption of WET, by activating the sub-band
associated with the highest channel gain of Device 3, which
is the 5-th sub-band as shown in Fig. 8a. Secondly, with
the reference of Fig. 8c, it can be observed that the power
allocation in Fig. 8d obeys the water-filling principle for
each device, i.e. allocating a higher power to the sub-band
possessing a high channel gain. This corresponds to the power
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Fig. 10. Simulation results of the total energy consumption versus the number
of IRS reflection elements N . The rest of parameters are specified in Table II.

allocation obtained in (21). Thirdly, comparing Fig. 8a and
Fig. 8c, we can see that the channel gains in the WET
and computing phase are different for each device after we
optimize the IRS reflection coefficients, which consolidates
our motivation to conceive separate IRS designs for the WET
and the computing phases.

D. Performance of the Proposed Solution

In order to evaluate the benefits of employing an IRS
in WP-MEC systems, we compare the performance of our
proposed algorithms with that of the benchmark schemes,
under various settings of the number of IRS reflection ele-
ments, of the device location, of the path loss exponent of the
IRS-related channel, and of the energy consumption per bit at
the edge, as follows.

1) Impact of the Number of IRS Reflection Elements:
Fig. 10 shows the simulation results of the total energy
consumption versus the number of IRS reflection elements
for the three schemes considered. We have the following
observations. Firstly, the performance gap between the scheme
“Without IRS” and the scheme “IRS RandPhase” increases
along with N , which implies that the IRS is capable of
assisting the energy consumption reduction in the WP-MEC
system, even without carefully designing the IRS reflection
coefficients. This is due to the so-called virtual array gain
induced by the IRS, as mentioned in Section I. Secondly,
the scheme “With IRS” outperforms the scheme “IRS Rand-
Phase”, which indicates that our sophisticated design of IRS
reflection coefficients may provide the so-called passive beam-
forming gain for computation offloading. Note that different
from the conventional MEC systems [37] where WET is not
employed, these two types of gain are exploited twice in
WP-MEC systems (during the WET and computing phases,
respectively). As such, IRSs are capable of efficiently reducing
the energy consumption in WP-MEC systems.

2) Impact of the Distance Between the Device Circle and
the IRS: Fig. 11 presents the simulation results of the total
energy consumption versus the distance between the HAP
and the mobile wireless circles. Our observations are as

Fig. 11. Simulation results of the total energy consumption versus the
distance between the HAP and the wireless device circle d1. Other parameters
are set in Table II.

Fig. 12. Simulation results of the total energy consumption versus the path
loss exponent of the IRS reflection link β, where we set βui = βia = β.
Other parameters are set in Table II.

follows. Firstly, the two IRS-aided schemes do not show any
visible advantage over the scheme of “Without IRS” when
we have d1 < 6 m, which indicates that each IRS has a
limited coverage. Secondly, the benefit of deploying the IRS
is becomes visible at d1 > 9 m in the scheme of “IRS
RandPhase”, while the advantage of the “With IRS” scheme is
already notable at d1 = 7 m. This observation implies that our
sophisticated design of IRS reflection coefficient is capable of
extending the coverage of IRS.

3) Impact of Path Loss Exponent: Fig. 12 depicts the
simulation results of the total energy consumption versus the
path loss exponent of the IRS related links. It can be seen that
the total energy consumption decreases if a higher path loss
exponent is encountered, which is because a higher β leads to a
lower channel gain of the IRS-reflected link. This observation
provides an important engineering insight: the locations of
IRSs should be carefully selected for avoiding obstacles.

4) Impact of Energy Consumption at the Edge: Fig. 13
shows the simulation results of the total energy consumption
versus the energy consumption per bit at the edge node. It can
be observed that the advantage of deploying IRS is eminent
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Fig. 13. Simulation results of the total energy consumption versus the energy
consumption per bit at the edge. Other parameters are set in Table II.

Fig. 14. Simulation results of the total energy consumption versus the number
of mobile devices K . Other parameters are set in Table II.

when we have a small value of ϑ, while the benefit becomes
smaller upon increasing the value of ϑ. The reason is explained
as follows. The OF of Problem P1 is the combination of the
energy consumption of WET and of processing the offloaded
computational tasks. If the energy consumption per bit at the
edge node is of a small value, the energy consumption of
WET plays a dominant role in the total energy consumption.
In this case, the benefit of employing IRS is significant.
By contrast, if ϑ becomes higher, the total energy consumption
is dominated by that at the edge. In this case, although the
energy consumption of WET can be degraded by deploying
IRSs, this reduction becomes marginal.

5) Impact of the Number of Mobile Devices: Fig. 14 repre-
sents the simulation results of the total energy consumption
versus the number of mobile devices. It can be observed
that although the total energy consumption increases upon
increasing the number of mobile devices, the increasing slope
of the “With IRS” scheme is the minimum one among those of
the three schemes considered. This observation demonstrates
the wireless channel can be efficiently reconfigured for achiev-
ing a high throughput by carefully designing the IRS reflection

Fig. 15. Simulation results of the total energy consumption versus the number
of sub-bands. Other parameters are set in Table II.

TABLE III

COMPARISON WITH A LOW-COMPLEXITY ALGORITHM. THE DEFAULT

PARAMETERS ARE SET AS SHOWN IN TABLE II

coefficient, even when the average number of sub-bands is
limited due to the increase of the mobile devices. This may
maintain the total energy consumption as a small value.

6) Impact of the Number of Sub-Bands: Fig. 15 depicts the
simulation results of the total energy consumption versus the
number of sub-bands. It can be observed that the total energy
consumption decreases upon increasing the number of sub-
bands. This reason is explained as follows. The increasing
number of sub-bands induces at least two benefits. Firstly,
the sum of the channel gain may be obtained for each device.
Secondly, since the sub-bands are assumed to be independent,
the system has a higher possibility to possess a sub-band
associated with a large channel gain if M is large. Specific to
the “With IRS” scheme, the total energy consumption has a
slight decrease when M = 8 is changed to M = 16, while the
reduction of the energy consumption is limited when we have
M > 16. This is because the energy consumption is dominated
by computation offloading when the communications resource
is limited, while it is dominated by edge computing when the
resource is sufficient.

E. Comparison With a Low-Complexity Algorithm

In order to further reduce the computational complexity of
the proposed algorithm, we propose a low-complexity algo-
rithm. Specifically, as seen in Fig. 8, only a single sub-band
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is activated for WET. Inspired by this observation, we may
firstly calculate the power required by each sub-band when
it is activated for WET. Then, the single sub-band associated
with the minimum power allocation is selected for WET. The
associated complexity is O(MK), which is much smaller than
the complexity of the proposed algorithm. Table III compares
the performance of Algorithm 5 and of the low-complexity
algorithm. It can be seen that the performance of the pro-
posed low-complexity algorithm is slightly worse than that of
Algorithm 5. In practice, this low-complexity algorithm can
be invoked.

V. CONCLUSION

To reduce the energy consumption of WP-MEC systems,
we have proposed an IRS-aided WP-MEC scheme and for-
mulate an energy minimization problem. A sophisticated algo-
rithm has been developed for optimizing the settings both in
the WET and the computing phases. Our numerical results
reveal the following insights. Firstly, the employment of IRSs
is capable of substantially reducing the energy consumption
of the WP-MEC system, especially when the IRS is deployed
in vicinity of wireless devices. Secondly, the energy consump-
tion decreases upon increasing the number of IRS reflection
elements. Thirdly, the locations of IRSs should be carefully
selected for avoiding obstacles. These results inspire us to
conceive a low-complexity algorithm for the large-scale IRS-
aided WP-MEC system as a future work. Furthermore, as com-
mented in Remark 2, the solution obtained by Algorithm 5 can
only associated with a saddle point. In order to further explore
the potential of IRS in WP-MEC systems, the optimal design
of the IRS phase shift is desired in the future.
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